Compressive Sensing Using the Entropy Functional
نویسندگان
چکیده
In most compressive sensing problems l1 norm is used during the signal reconstruction process. In this article the use of entropy functional is proposed to approximate the l1 norm. A modified version of the entropy functional is continuous, differentiable and convex. Therefore, it is possible to construct globally convergent iterative algorithms using Bregman’s row action D-projection method for compressive sensing applications. Simulation examples are presented. Index Terms Compressive Sensing, Entropy functional, Iterative row-action methods, D-Projection.
منابع مشابه
Compressive sensing using the modified entropy functional
Article history: Available online 2 October 2013
متن کاملAdaptive Compressive Sensing of Images Using Spatial Entropy
Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many blocking artifacts and blurs. To overcome these negative effects, we propose an Adaptive Block Compressive Sensing (ABCS) system based on spat...
متن کاملDepth Image Coding Using Entropy-Based Adaptive Measurement Allocation
Differently from traditional two-dimensional texture images, the depth images of three-dimensional (3D) video systems have significant sparse characteristics under the certain transform basis, which make it possible for compressive sensing to represent depth information efficiently. Therefore, in this paper, a novel depth image coding scheme is proposed based on a block compressive sensing meth...
متن کاملQuantized Compressive Sensing
We study the average distortion introduced by scalar, vector, and entropy coded quantization of compressive sensing (CS) measurements. The asymptotic behavior of the underlying quantization schemes is either quantified exactly or characterized via bounds. We adapt two benchmark CS reconstruction algorithms to accommodate quantization errors, and empirically demonstrate that these methods signif...
متن کاملImage Compression Based on Compressive Sensing: End-to-End Comparison with JPEG
We present an end-to-end image compression system based on compressive sensing. The presented system integrates the conventional scheme of compressive sampling and reconstruction with quantization and entropy coding. The compression performance, in terms of decoded image quality versus data rate, is shown to be comparable with JPEG and significantly better at the low rate range. We study the pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1101.5079 شماره
صفحات -
تاریخ انتشار 2011